On a class of pseudocompact spaces derived from ring epimorphisms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of pseudocompact spaces derived from ring epimorphisms

A Tychonoff space X is called RG if the embedding of C(X) → C(Xδ) is an epimorphism of rings. Compact RG spaces are known and easily described. We study the pseudocompact RG spaces. These must be scattered of finite Cantor Bendixon degree but need not be locally compact. However, under strong hypotheses, (countable compactness, or small cardinality) these spaces must, indeed, be compact. The ma...

متن کامل

Maximal pseudocompact spaces

Maximal pseudocompact spaces (i.e. pseudocompact spaces possessing no strictly stronger pseudocompact topology) are characterized. It is shown that submaximal pseudocompact spaces whose pseudocompact subspaces are closed need not be maximal pseudocompact. Various techniques for constructing maximal pseudocompact spaces are described. Maximal pseudocompactness is compared to maximal feeble compa...

متن کامل

Ring Epimorphisms and C(x)

This paper studies the homomorphism of rings of continuous functions ρ:C(X) → C(Y ), Y a subspace of a Tychonoff space X, induced by restriction. We ask when ρ is an epimorphism in the categorical sense. There are several appropriate categories: we look at CR, all commutative rings, and R/N, all reduced commutative rings. When X is first countable and perfectly normal (e.g., a metric space), ρ ...

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2005

ISSN: 0166-8641

DOI: 10.1016/j.topol.2005.01.030